Two distinct types of inhibition mediated by cartwheel cells in the dorsal cochlear nucleus.

نویسندگان

  • Jaime G Mancilla
  • Paul B Manis
چکیده

Individual neurons have been shown to exhibit target cell-specific synaptic function in several brain areas. The time course of the postsynaptic conductances (PSCs) strongly influences the dynamics of local neural networks. Cartwheel cells (CWCs) are the most numerous inhibitory interneurons in the dorsal cochlear nucleus (DCN). They are excited by parallel fiber synapses, which carry polysensory information, and in turn inhibit other CWCs and the main projection neurons of the DCN, pyramidal cells (PCs). CWCs have been implicated in "context-dependent" inhibition, producing either depolarizing (other CWCs) or hyperpolarizing (PCs) post synaptic potentials. In the present study, we used paired whole cell recordings to examine target-dependent inhibition from CWCs in neonatal rat DCN slices. We found that CWC inhibitory postsynaptic potentials (IPSPs) onto PCs are large (1.3 mV) and brief (half-width = 11.8 ms), whereas CWC IPSPs onto other CWCs are small (0.2 mV) and slow (half-width = 36.8 ms). Evoked IPSPs between CWCs exhibit paired-pulse facilitation, while CWC IPSPs onto PCs exhibit paired-pulse depression. Perforated-patch recordings showed that spontaneous IPSPs in CWCs are hyperpolarizing at rest with a mean estimated reversal potential of -67 mV. Spontaneous IPSCs were smaller and lasted longer in CWCs than in PCs, suggesting that the kinetics of the receptors are different in the two cell types. These results reveal that CWCs play a dual role in the DCN. The CWC-CWC network interactions are slow and sensitive to the average rate of CWC firing, whereas the CWC-PC network is fast and sensitive to transient changes in CWC firing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct functional and anatomical architecture of the endocannabinoid system in the auditory brainstem.

Endocannabinoids (ECs) act as retrograde messengers that enable postsynaptic cells to regulate the strength of their synaptic inputs. Here, by using physiological and histological techniques, we showed that, unlike in other parts of the brain, excitatory inputs are more sensitive than inhibitory inputs to EC signaling in the dorsal cochlear nucleus (DCN), an auditory brainstem nucleus. The prin...

متن کامل

Molecular layer inhibitory interneurons provide feedforward and lateral inhibition in the dorsal cochlear nucleus.

In the outer layers of the dorsal cochlear nucleus, a cerebellum-like structure in the auditory brain stem, multimodal sensory inputs drive parallel fibers to excite both principal (fusiform) cells and inhibitory cartwheel cells. Cartwheel cells, in turn, inhibit fusiform cells and other cartwheel cells. At the microcircuit level, it is unknown how these circuit components interact to modulate ...

متن کامل

Molecular layer inhibitory interneurons provide feedforward and lateral 1 inhibition in the dorsal cochlear nucleus

26 27 28 In the outer layers of the dorsal cochlear nucleus, a cerebellum-like structure in the 29 auditory brainstem, multimodal sensory inputs drive parallel fibers to excite both principal 30 (fusiform) cells and inhibitory cartwheel cells. Cartwheel cells, in turn, inhibit fusiform 31 cells and other cartwheel cells. At the microcircuit level, it is unknown how these circuit 32 components i...

متن کامل

Physiological identification of the targets of cartwheel cells in the dorsal cochlear nucleus.

The integrative contribution of cartwheel cells of the dorsal cochlear nucleus (DCN) was assessed with intracellular recordings from anatomically identified cells. Recordings were made, in slices of the cochlear nuclei of mice, from 58 cartwheel cells, 22 fusiform cells, 3 giant cells, 5 tuberculoventral cells, and 1 cell that is either a superficial stellate or Golgi cell. Cartwheel cells can ...

متن کامل

Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus.

Certain distinct populations of neurons in the dorsal cochlear nucleus are inhibited by a neural source that is responsive to a wide range of acoustic frequencies. In this study, we examined the glycine immunoreactivity of two types of ventral cochlear nucleus neurons (planar and radiate) in the rat which project to the dorsal cochlear nucleus (DCN) and thus, might be responsible for this inhib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 102 2  شماره 

صفحات  -

تاریخ انتشار 2009